The Society of Song, Yuan, and Conquest Dynasty Studies appreciates the persistent efforts of Beverly Bossler in the scanning of volumes 18 through 30. Through her work, the Society has been able to make electronic copy of these volumes of the *Bulletin of Sung-Yuan Studies Newsletter* available in the public domain.

Please Note: Because this bulletin was scanned as a series of graphics images of the pages, it is not searchable.
The complexity of China's ancient system of weights and measures is widely known. Indistinct at best is the picture we have today of the many official attempts throughout the traditional era either to standardize or reform this metrology. The volatile and sometimes capricious nature of government-authorized values for various weights and measures, as well as certain other factors, led to the formation of an unofficial or "popular" system, which, with the passage of time, has become even more difficult to sort out than the official one. As pointed out by the eminent Ming dynasty (1368-1644) musician and mathematician Zhu Zaiyu (1536-1611), even a foot measure (Chinese: chi 尺) in common use during a given period of Chinese history will inevitably reveal minor differences when meticulously compared with other, contemporary chiextent foot measures from the ancient period and those excavated through the dynasties have consistently proven this to be the case.\(^1\)

The same may be said for the measures li 里 and mou 毫, both of which are closely related to chi. Although our knowledge about these measures and their uses throughout the successive eras is limited, this is especially the case with regard to the Song dynasty (960-1279). Even less is known about the same measures as they were used by the states of Liao (907-1125) and Jin (1115-1234). In this communication we will endeavor to examine and provide computations--as precise as possible--for the Song dynasty measures of li 里 and mou 毫, as well as to conduct a preliminary investigation of these same measures under the Liao and Jin. It is hoped that the data provided below will not only shed light upon li 里 and mou 毫 during the Song, Liao, and Jin, but will also put into better historical perspective the measure systems used before and after those periods. While the topic of this investigation has led us to consult a wide variety of traditional sources, we have sought especially to draw relevant data from recent archeological materials.

1. The Relation Between Li and Chi During the Song

The system of measurement in which one li 里 was equivalent to 300 bu 步, and one bu equivalent to six chi 呎, was established, at the latest, during the Qin (221-206 B.C.). This ratio continued to be used until the Sui and Tang dynasties (581-618 and 618-907, respectively), when it was changed. Throughout the Tang, the codes (li 里 and statutes (liang 两)--which, among other things, legally defined official weights and measures--were continually revised. Those statutes mentioned in historical sources date from the following years or periods:

- Seventh year of the Wude reign (624)
- Eleventh year of the Zhenguan reign (637)
- Second year of the Yonghui reign (651)
- The Linde reign (664-666)

\(^1\)Zhu makes this comment in the "Guiding Rules of Compilation" 凡例 that appear in his treatise on the measure of capacity, titled Jialiang suanjing 嘉量算經 (Wanwei biecang ed.), "Fan li," p. 10a.

\(^2\)See, for instance, the length variations in the numerous foot measures described by John C. Ferguson in his informative article "Chinese Foot Measure," Monumenta Serica 6 (1941), especially 360-363.

The Gianfeng reign (666-668)
The Yifeng reign (676-679)
The Chuding reign (685-689)
The Shenlong reign (705-707)
The Taiji reign (1 March 712-21 June 712)

Second year of the Kaiyuan reign (715; some sources give the more general reference of "beginning of the Kaiyuan reign")

Seventh year of the Kaiyuan reign (719; some sources give the earlier date of 716)

Twenty-fifth year of the Kaiyuan reign (737).\(^3\)

The li system used during these eras also underwent changes, one result of which was the formation of the Tang dynasty "Big Li" 大里 and "Small Li" 小里.

According to the "Monograph on Foods and Commodities" ("Shihuo zhì" 食貨志) in the Old Documents of the Tang (Jiu Tang shu 舊唐書), "The codes and statutes were first fixed in the seventh year of the Wude reign (624). Regarding the system for measuring a field, five chi constitute one bu 240 square bu constitute one mou; and one hundred mou constitute one aïn 傳. Thus, five "Big Chi" 大尺 during the Sui and Tang replaced the six "Small Chi" 小尺 used in earlier periods. But in fact, the numerical value of each was equal, and so the length of a bu did not change.

The passage just quoted from the Jiu Tang shu does not mention how many bu constitute one li. Perhaps there is an omission in the received text. In an early Song work, compiled by the well-known scholar Qian Yi 錢易, fl. early 11th cent.) and titled A New Book from the South (Mandu xinshu 南都新書), there is an excerpt: taken from the Tang Miscellaneous Statutes 續令 that provides an answer to this question:

The Statutes say: "All the measures are to use the medium-size black-paniced millet 王粟 of the north as a standard. The width of one grain of millet constitutes ten 分. Ten 分 constitute one １氷; ten 吋 constitute one 1 1寸; two 吋 constitute one Big Chi; and ten Chi constitute one zhang 戸. . . . All standards of weights and measures, which follow the accumulated [measures of] black-paniced millet, are used when tuning the pitch of a bell, when calculating the length of the sun, when making up prescriptions, as well as for the cap and robe.

\(^3\)These various statutes are quoted with accompanying notes and collations in Niida Noboru (仁井田隆, comp., Tökyö shô 競今拾遺 (1933; rpt. Tökyö: Tökyö daiyaku shuppanshö, 1964), passim.

\(^4\)Jiu Tang shu, 48.2088 (this and all subsequent references to the dynastic histories are to the Zhonghua shuju editions).
system. On occasions other than these, government and private, the Big Chi is always used. In all the offices in the capital, as well as in all the counties, each is provided with standardized steelyards, foot measures, dou 斗, sheng 升, and ge 合, all of which are made of bronze. In all measurements of land [distances], five chi constitute one bu, and 300 bu constitute one li.”

The Japanese legal historian Niida Noboru has recovered and assembled the texts of a Miscellaneous Statute dating from the Wude era (that is, 618-627) and the seventh year of the Kaiyuan (or 719) period, each of which states: “All measures of land [distances] shall regard five chi as constituting one bu, and 300 bu as constituting one li.” Niida’s source for these statutes is a passage that appears in Tien Yen’s (fl. eighth century) Yaihao Yang Suanjing 杖慢算經 哪 which, quoting a Miscellaneous Statute of the Tang, says that five chi make one bu, and 300 bu make one li. But in fact, this Miscellaneous Statute is different from the Wude statute. In the Monograph on Geography ("Mili zhi" 地理志) found in the Sui shu 嚈書, which was edited between 614

5 In Zhou times, the expression mianfu 免服 referred to the various caps and robes of the emperor, each of which was used on a different ceremonial occasion. See Zhou li (Shu congkan ed.), 5.100. Here, however, the term is used in a more general sense to indicate the caps and robes worn by government officials.

These are common measures of capacity. In Song times, ten ge constituted one sheng, and ten sheng constituted one dou.

Nanbu xinshu (Beijing: Zhonghua shuju, 1958), p. 106. A Japanese code promulgated in the years 701-704 provides additional evidence that supports the measurements in the Nanbu xinshu. See the Taiho statute quoted in Chen Mengjia 陳夢家, "Mouzi yu li zhi" 設制與里制, Kogoy 1 (1966), 43. It might also be mentioned here that Qian Yi’s quotation actually comprises several of the so-called Miscellaneous Statutes promulgated during the Tang. These same statutes are also cited (with some textual differences) in Niida Noboru, Töyö shūji, pp. 841, 845, and 846. According to the Siku Catalog, the Nanbu xinshu was compiled sometime during the Dazhong xiangfu 大中祥符 reign-period (1008-1017), when Qian Yi was serving as Administrator of Kaifeng. The same source reports that Qian’s miscellany “records stories from the Tang and Five Dynasties. Often it registers anecdotes and trivia. Court regulations and state laws... are also scattered throughout the text.” Ji Yun 紀昀 (1724-1805) et al., ed., Nevin Siku quanshu zongmu tiyao jì Siku weishou shumu jinhui shumu 金文酈圖書合集 (Taipei: Taiwan Shangwu yinshuguan, 1978), III, 2900. Because of a later change in the ratio of bu to li during the Tang (see below), it would not be unreasonable to assume that the Miscellaneous Statute preserved in the Nanbu xinshu dates from the early years of the dynasty.

6 Niida Noboru, Töyö shūji, p. 846.

Xiahao Yang, Xiahao Yang Suanjing (Wuyilingdian Juzhen ed.), 1.9b.

and 656, the system in which one li comprised 360 bu had already been adopted in order to provide figures on the circumference of the walls around the Sui and Tang capitals. Thus, the regulation that “five chi constitute one bu, and 360 bu constitute one li,” if it did not begin in the eleventh year of the Zhenguan reign (or 657), then it did so with the statutes promulgated in the second year of the Yonghui period (or 650). The so-called Big Li also emerged at this time. Compared with the Li system used before the Sui and Tang, in form there was no change: 1,800 chi still constituted one li. The increase in the length of a chi, however, was accompanied by a corresponding increase in the length of a li.

The ratio of five chi to one bu, and 360 bu to one li, continued to be used until the late Song. As for the system of measurement wherein “five chi constitute one bu, and 300 bu constitute one li,” this continued to be employed on certain occasions, such as when calculating distances related to the length of a sun shadow. Its influence even extended to the non-Han nationalities who lived in areas north of China. In fact, this was the li system adopted later by the Liao.

A clear and precise account of the li system used during the Northern Song (960-1127) is found in the “Conveyances and Clothing Monograph” ("Yifu zhi" 奥服志) in the Song History (Song shi 東史): In the fifth year of the Tianshang 天聖 reign-period (or 1027) under the emperor Renzong 仁宗 (or Zhao Zhen 趙禎; r. 1022-1063), the Inner Attendant 内侍 (or eunuch) Lu Daolong 魯道隆 卑 up the designs for the Mileage-Recording Drum Carriage 記里鼓車 The ancient standard was that six chi constituted one bu, and 300 bu constituted one li. If we convert the ancient standard into the modern one, then five chi constitute one bu, and 360 bu constitute one li.”

The Southern Song (1127-1279) system of li and mou, which followed that of the Northern Song, is described at length in Qin Jiushao’s 李九韶 (13th cent.) A Book on Mathematics in Nine Chapters (Shushu juzhang 數書九章) completed in 1247). Much of the information provided by Qin is related to Southern Song social and economic activities and thus preserves a large amount of historical material related to li and mou, as well as to other measures. What is relevant to our discussion here is that the Shusshu juzhang mentions, on no fewer than ten occasions,

10 Song shi, 149, 3493. A Mileage-Recording Drum Carriage is a twin-wheeled and single-shafted vehicle equipped with a drum that was sounded once for each li traveled. Such carriages have been in existence in China for over 2,000 years, and were used by emperors as an ornament for the royal guard during trips around the empire. For additional information on the history of the Drum Carriage, see “The’s Taxicab in China,” in Herbert A. Giles, Adversaria Sinica (Shanghai: Kelly & Walsh, 1914), pp. 223-227.
that the standard for one Li is 360 by. Thus, we can be reasonably sure that one Li during the Song was equal to 360 x 5 chi = 1,800 chi.

It is also worth pointing out that Qin Jiushao, after citing numerous passages related to the Li and mou metrology in general use during the Southern Song, often turns to "special situations" outside of the official measurement system. The following examples will suffice to illustrate the complex nature of the Li and mou system described in historical works and the different systems used in parts of the Southern Song empire. In chapter 5 of the Shushu jiuzhang we find the following comment: "The standard for one Li in 300 by. This ratio was the ancient standard. Perhaps during Qin Jiushao's time it was still used in some areas. Elsewhere in his text Qin mentions that "The standard for one Li is 360 by; the standard for one by is five chi; eight cun."

And finally, on another occasion, the author remarks: "2,160 chi is used to figure one Li.

2. The "Big Li" and "Builder's Li" of the Song

Many types of foot measures, most of which had special names and served specific purposes, were in use during the Song. The principal ones used to calculate distances and land area include (1) the "Three Offices' Cotton and Silk Foot" 三司布帛尺; (2) the "Builder's Foot" 建造尺; (3) the "Zhe (or Zhejiang) Foot" 浙江尺; and (4) the "Gnomonic Foot" 影表尺(also known as the Liangtian chi 梁天尺, or "Astronomy-Measuring Foot"). Here we will only discuss the first two of these foot measures, which are related to the Li system of the Song. The Zhe Foot and the Astronomy-Measuring Foot, along with their relevance to the Li system, will be treated in the next section.

The most commonly used foot measure during the Northern Song was the Three Offices' Cotton and Silk Foot. This measure was first established by the government, to be used when collecting in-kind taxes in cotton and silk. At the beginning of the Song, such taxes were collected by a state finance commission headed by a "Three Offices' Commissioner" 三司使. Hence, the foot measure was so named. Since the Three Offices' Cotton

and Silk Foot was also supervised by the Grand Treasury Court 太府寺 (an agency responsible for managing the central government's non-grain receipts and disbursements), it was also known as the "Grand Treasury Cotton and Silk Foot" 太府布帛尺. Sometimes it was also called the "Department Foot" 部尺 ("Department" here designates the Accounting Department 計署, which was another name for the Three Offices) or the "Official Foot" 官尺.

By examining textual sources and excavated objects we shall now attempt to determine the length of the Three Offices' Cotton and Silk Foot. According to Cal Yung's 蔡元定 (1135-1198) New Treatise on the Standard Musical Tubes (Lulu xinshu 流呂新書), the Grand Treasury Cotton and Silk Foot was equivalent to the "Pre-Tsin Foot" 前尺, which measured one chi, three cun, and five fen. The Song dynasty scholar Cheng Jiong 程 Aç的 his monograph on weights and measures titled Illustrations and Explanations of the Three Measuring Vessels (Sangti tuyi 三器圖義), remarks that: "Recently, Sima Bei 司馬偏 engraved a likeness of this foot (that is, the 'Zhou Foot') into stone." Later, Cheng goes on to say: "In recent years Sima Bei has made engravings of the Zhou foot ... The Three Offices' Cotton and Silk Foot carved by Sima Bei was equal to one chi, three cun, and five fen of his Zhou Foot."

Wang Yinglin 王應麟 (1223-1296), in his encyclopedia Yuhai 玉海, also says the Grand Treasury Cotton and Silk Foot is "equal to the Zhou dynasty chi of one chi, three cun, and five fen. According to the "Monograph on Pitches and Chronometry" (Lulu zhi 樂志) in the Tsin shu 聖書, in the ninth year of the Taishi reign-period (or 273) under the Tsin, the Secretariat Supervisor 號署 書記, Xun Xu 頒許, ordered the Editorial Director 書記, Liu Gong 刘奉, to make an 'ancient foot measure' 公尺 based on descriptions in the Zhou li 騎禮.

This "ancient foot measure" (or "Zhou Foot") was also known as the "Pre-Tsin Foot" and the "Xun Xu Foot."

Now, from the fifteen categories of chi listed in the "Monograph on Pitches and Chronometry" in the Sui shu, we discover that the length of a "Pre-Tsin Foot" was equal to the "Liu Xin Bronze Hu Foot" 劉歆銅尺 used during Wang Mang's 王莽 (43 B.C.-A.D. 25) time. From the graduations on a surviving Astronomy-Measuring Foot of the Ming dynasty, the modern scholar Yi Shitong 伊世同 has determined that one Wang Mang Bronze Hu Foot measured 23.05 cm. Thus, we know that the length of
the Three Offices' Cotton and Silk Foot during the Song measured 1.35 x 23.05 cm = 31.12 cm.

In 1965, a wooden foot measure dating from the early Northern Song was excavated at "Ten Li Inn" 十里店 in Wuhan, Hubei, which measured 31.2 cm in length, 2.3 cm in width, and 0.5 cm in thickness.22 The length of this chi is almost exactly the same as the Three Offices' Cotton and Silk Foot described above, which lends support to our contention that the length of one Three Offices' Foot was approximately 31.12 cm.

Chen Mengjia speculates that the Three Offices' Foot was used in Song times for construction work and distance calculations. Then he states that it measured 31.57 cm in length.23 Chen does not cite the source for his conjecture. Chun-shu Chang 張春樹 has consulted Chen's figure and, using a length of 31.1 cm for the Three Offices' Foot, calculates one "li" during the Song as measuring 1800 x 31.1 cm = 559.8 m.24 Moreover, Chang points out: "The weights and measures before and after the Song dynasty were often different, and variations also existed even during the Sung period."25 This is certainly true. But more can be said about the matter. For now, the most important point is this: if you use the Three Offices' Foot to measure distance in chu, the result is actually the Big Li of the Song. For the sake of convenience, hereafter we shall refer to this as li', which measures 1800 x 31.12 cm = 560.16 m.

Because of chronological and geographical differences, slight variations in the lengths of various 'three Offices' Feet dating from the Northern Song have been reflected in certain archeological discoveries. These variations are also reflected in sources of that period. For instance, in chapter 3 of Shen Guai's 封括 (1032-1096) 26 famous miscellany Mengxi bitan 夢溪筆談 we find the following report:

While conducting research on the musical pitches (yuulu樂律), I received an imperial directive to remodel the Armillary Sphere. I located some weights and measures, such as dou and sheng, which predate the Qin and Han. [From my observations of these measures]

22 This discovery is reported by the Hubeisheng Wenhua Ju Wenhua gongzuodui 湖北省文化局文物工作隊 in Wenhua 5 (1966), 57.

26 Shen Guai's dates of birth and death are disputed. Here we follow the chronology suggested by Wenren Jun 閔人軍 and Xu Gui 徐晃 in their article "Shen Guai de qianban sheng" 沈括 的前半生 (forthcoming in Zhejiang ke xue yi yan juyi [Studies in the History of the Natural Sciences]).

I calculated that ... 2 " chu, 5.3 " fen of an ancient foot is more than 1 " chu, 8.42 " fen of a modern (or eleventh-century) foot.27

In other words, following Shen Guai's calculations, one Three Offices' Foot in Northern Song times measured approximately 2.53 x 1.845 x 23.05 cm = 31.61 cm. It is highly likely that three of the foot measures described in Zhongguo guanli duliang hengtu 慶國古代度量衡圖 (Beijing: Wenhua chubanshe, 1981), pp. 7-8.28 These discoveries are reported in Kaogu 4 ('982), 389-391, and in Kaogu 2 (1963), 71-79, 86, respectively.

29 These discoveries are reported in Kaogu 4 ('982), 389-391, and in Kaogu 2 (1963), 71-79, 86, respectively.

30 Zhongguo guanli duliang hengtu, p. 7.
If we use Song dynasty Li as a guide, then the total distance from the Supreme Goodness Gate in Kaifeng to the banks of the Huai River in Si county was 840.43 m by 568.98 m = 478.20 km. If we use Li, then the distance would be 840.43 m by 556.38 m = 467.598 km. Now, if we retrace Shen Gua’s itinerary along the Northern Song maps provided in Tan Zixiang’s Zonghu lishu itu ji 中華歷史地圖集, following Tan’s scale of 12,800,000, then the length of the Bian Canal from Kaifeng to Si county is about 460 km. Although this method of calculation admittedly is imprecise, still it strongly suggests that Shen Gua used either the Song dynasty li or li when figuring his distance.

One additional observation before closing this section. According to the "Monograph on Geography" in the Song shi, the circumference of the New Wall in Kaifeng was 50 li, 165 bi. If we convert this figure using Song Li, then the circumference of the canal measured 560.16 m by 50.46 m = 28.77 km. If we calculate using Song Li, then the circumference of the wall measured would be 568.98 m by 50.46 m = 28.71 km. Since 1961, the Song City Wall of Kaifeng Archeological Team 興安古城 考古隊 has been carrying out exploratory drilling and test digging. As a result of their excavation work, the approximate perimeter of Kaifeng’s New Wall can now be determined. The western portion of the rampart measured about 7,590 m, while the length of the eastern section was approximately 7,640 m. The lengths of the southern and northern sections were about 6,990 and 6,940 m, respectively. Thus, the circumference of the wall was approximately 29,120 m. Note that the figures of 28.27 and 28.71 km calculated earlier from information in the Song shi more or less match the 29.12 km figure based on recent archeological data.

3. The "Zhe Li" and "Astronomy-Measuring Li" of the Song

During the Song, many types of foot measures were also used on the local level. The most famous of these was the "Zhe Foot." In his miscellaneous register Kuo After the Guests Depart Bintui lu 賓退錄, the Southern Song writer Zhao Yushi Zhao Yushi (1175-1231) notes: "The Zhou Foot 周尺 equals less than the seven cun and five fen of a [Three Offices] Cotton and Silk Foot. As for the Zhe Foot of today, it was not used.

31This comment is reproduced by Arthur W. Hummel in his translation of Wang Guowei’s "Chinese Foot-Measures of the Past Nineteen Centuries," in Journal of the North China Branch of the Royal Asiatic Society 59 (1928), Chinese text facing p. 122. See also the comments in Wang Guowei’s "Ji xian cun lidai chuidu 記先秦時尺度," which is found in his Guantang jilin 觀堂集林 (Beijing: Zhonghua shuju, 1959), 19,962.

33Xin jiaozheng Mengxi bitan 新校正夢溪筆談 , 25,250. It is not reported how Shen Gua arrived at this precise figure. The Supreme Goodness Gate was a water gate situated on the eastern flank of Kaifeng’s outer wall. It gave passage to the Bian River. In Song times Si county was located at the confluence of the Bian and Huai Rivers, just northeast of the Song-Jin border town of Xuyi 訣縣. Since the early Qing period, this area has been inundated by Hongze Lake 洪澤湖.

34See especially the map on pp. 22-23 in Vol. VI of Tan’s Zonghu lishu itu ji. The map is an 1822 by 1826 in Shanghai. It might be added here that the course of the Bian River on this map is based on the research of the eminent scholar of historical geography, Zou Yilin 鄒力林 of Fudan University in Shanghai. Many of the details concerning Zou’s research were published in two earlier articles: "Si-Tang Bianhe kao" 陝土唐汴河考, Guanming ribao (14 July 1962); and "Tang-Song Bianhe yuansal de yuanjing ji qi guocheng" 唐宋汴河浚塞的原因及其過程, Fudan daxue xuebao 1 (1962), 51-64.

35Song shi, 85,2102. "New Wall" is another name for the outer rampart of Kaifeng.

comprises eight gun and four fen. Now, the practice established in the Sui shu of differentiating fifteen categories of chi was still followed in Song times. The so-called Zhou foot mentioned by Zhao Yushi was the same as the Pre-Tsin Foot which, as we have already seen, measured 3.25 cm. In the early eleventh century, a certain Gao Juona 高君諾 (997-1055) once fashioned a replica of this foot-measure. From this figure of 2.35 cm we can calculate one Zhe Foot = 100/84 x 2.35 cm = 27.44 cm. Moreover, if we follow the statement in one Song work that one Zhe Foot = 100/113 x 31.12 cm = 27.54 cm. Thus, the average value of Zhe Foot = 27.49 cm.

Although an ancient Zhe Foot has yet to be discovered in China, a Small Foot 無足脚 was used locally in Fujian has been excavated. This bamboo foot-measure of the Southern Song was found in a sunken boat discovered in Quanzhou Bay 泉州湾, Fujian, in 1974. The surviving portion of this chi is 20.7 cm long, 2.4 cm wide, and 0.4 cm thick. Today it is housed in the History of Overseas Communications Museum in Quanzhou. Based on the graduations found on the measure, one foot equalled 27 cm.

In 1975, a black-lacquered wooden foot-measure bearing carved floral patterns was unearthed in a Southern Song tomb in Fucang Mountain 富康山 in Fuzhou, Fujian. It measures 28.3 cm long, 2.6 cm wide, and 1.25 cm thick.

The two foot measures just described and the Zhe Foot discussed earlier all belong to the so-called Small Foot system of the Song. Although the origin and development of these measures have yet to be defined by archeological discoveries and research, there is absolutely no doubt about the existence of the Zhe foot. If we calculate one li based on our average figure for a Zhe foot and call this "Song li", then one Song li = 1,800 x 27.49 cm = 49,048 cm.

According to information in Li Jifu’s 李吉甫 (758-814) Illustrated Gazetteer on the Commanderies and Townships of [the] Prime Accord [Era] (元和郡縣圖志) concerning the surface area of Hang county (modern Hangzhou, Zhejiang), "From east to west it is 554 li; north to south it is 89 li." The figures for the same area provided by Yue Shi 許之 (930-1007) in his Records Encompassing the Universe from the [the] Grand Tranquility [Era] (太平廣記) are different: "East to west it is 617 li, north to south it is 99 li." Correlating these two sets of figures, we arrive at the following:

\[-617 \div 554 = 1.11 \div 99 = \frac{617}{554} = 1.11 \div 99 = \frac{554}{617} = \frac{1.11}{99} \quad \text{(Formula 1)}

It is evident from Formula 1 that the ratio of change of north to south, and east to west distances is almost exactly the same in the Song as it was in the Tang. This fact suggests that in Hang county the li system underwent some type of adjustment between the Tang and Song. To be more specific, Li Jifu, in his Yuanhe junxian tushi 用和郡縣圖志 used the Tang dynasty Big li to calculate the dimensions of Hang county, while Yue Shi in his Taiping huanyu ji used the Zhe li of the Song.

Now, the Big Foot of the Tang is in fact the Official Foot used during the Kaihuang reign period of the Sui (that is, 581-601). According to the Sui shu the Official Foot of the Kaihuang period was the same as the "Market Foot Measure" 尺 of the Northern Zhou (557-581) and the "Later Foot Measure" 尺 of the Northern Wei (386-534), and "actually equalled one chi, two gun, eight fen, and one li of the Pre-Tsin Chi." Thus, the length of the Tang dynasty Big Foot = 1.281 x 23.05 cm = 29.527 cm. From this we calculate a Big li of the Tang to equal 1,600 x 29.527 cm = 53,149 cm. A comparison of the Tang Big li and Song Zhe li yields the following:

\[\frac{531.49}{494.82} = 1.074 \quad \text{(Formula 2)}

The number and the length of li should be inversely proportionate. There is a small difference, however, between Formulas 1 and 2, which can be explained in the following way: the length of some of the Tang dynasty foot measures either excavated or handed down from ancient times varies from 30 to 31 cm. If we take the silver-inlaid Iron Foot 鐵尺 on display in the National Palace Museum in Beijing as a representative example, figuring each such chi totals 30.6 cm, then

\[\text{Tang Li} = \frac{1,800 \times 30.6}{27.49} = 1.11 \]

Theorem 3 thus matches precisely with Formula 1.

Chen Suiyin's 陳鈞 (Song) in his Record of the Transit Palace After the Southern Crossing (南渡行紀) says that the circumference of the August Wall (that is, the wall around the

\[43 \text{Taiping huanyu ji} \] (Yonghe zhen: Wenhai chubanshe, 1963), 93.700.

\[44 \text{Sui shu}, 16.405. \] The unit of measure li mentioned in this passage equals 1/1000 of a chi.

\[45 \text{Our figure for the "Iron Foot" is taken from Zhongguo guzai duliangheng tui, p. 7.} \]
imperial precincts in Lin’an) was nine li. 46 If we calculate with Song li12 or Song li13, the circumference of the August Wall would have extended more than 5,000 m. Calculating with Song li14, then the circumference would have been about 4,453 m. According to the recent findings of Wang Shilun 王士倫, Head of the Cultural Relics and Archeological Research Institute of Zhejiang Province 浙江省文物考古研究所, the length of the east to west portion of the imperial wall in Lin’an was about 1,400 m, and from north to south it was greater than 700 m. The August Wall’s circumference thus measured greater than 4,200 m. 47 Clearly, then, Chen Suying’s figure of “nine li” was calculated by using the Zhe li.

Many scholars have regarded Cheng Dachang’s comment “The Official Foot and the Zhe Foot are the same” to be wrong. We believe that rather than to say Cheng was unable to distinguish between an Official Foot and Zhe Foot (he was, after all, a leading scholar of the twelfth century), it would be better (and more accurate) to say that after the move of the Song capital to Lin’an, the Zhe Foot originally used in the area around Hang county was elevated to the status of a “Government” or “Official Foot.”

During the Song, taxes were assessed by pacing off amounts of land in mou. Even for the same parcel of land, the larger the number of mou it was calculated to encompass, then the more the amount of taxes collected by the state. It was thus obviously advantageous to the Song government to use the Zhejiang Foot when figuring mou rather than the Three Offices’ Foot. Moreover, at the end of the Northern Song, the practice of selling Official Fields 官田 began. 50 By the early years of the Southern Song the sale of government land was to become more and more prevalent. Using the Zhejiang Foot to figure mou was clearly a pecuniary advantage to the government in its huge sale of Official Fields.

In light of the developments just outlined, it is certainly possible that the Zhejiang Foot was elevated to the status of an Official Foot. Moreover, it will be recalled that the Three Offices’ Foot was originally employed when collecting in-kind taxes in cotton and silk. As we saw earlier, however, by Southern Song times, the Huai Foot was expressly used to measure silk fabrics. The Huai Foot was probably 10.8 by 27.49 cm = 34.36 cm2. 51 It was longer than the Three Offices’ Foot and gave an advantage to those who ruled the empire. It might also be mentioned here that the shipbuilding industry during the Song customarily used the Huai Foot to calculate measurements. 52 It remains to be determined, however, whether the Huai Foot was ever employed to calculate distance or land area.

The chi used to calculate the length of sun shadows during the Song must have been a continuation of the Gnomonic Foot of the Tang. Its predecessor was the Iron Foot of the Northern Zhou, which measured 24.525 cm in length. 53 If used in astronomical-geodetic computations, then the li that is computed is the Song Astronomical li. Hereafter we shall refer to this as Song li15. It equals 1,800 x 24.525 cm = 44.45 m. The large-scale astronomical-geodetic computations initiated by the famous astronomer and Buddhist monk Yixing (682-727) during the Kaiyuan period (713-742) of the Tang are well-known historical examples of actual instances where Astronomical li were used to compute distances on earth. 54 While astronomical-geodetic surveying was not made during the Song on a scale comparable to that of the Tang, there was still probably ample occasion for use of the Astronomical li.

The prominent twelfth-century writer Lou Yue 樂奐 (1137-1213) once served as ambassador to the Jin. Like all Song envoys to the north, his itinerary followed a prescribed course along the Bian River. According to the term “official fields” refers broadly to land owned by the government.

This figure is based on our earlier computation that an Official Foot and the Zhe Foot represented 0.8 of a Huai Foot.

Chen Gaohua 陳高華 and Wu Tai 吳泰, “Guanyu Quanzhouwan chu tu hai chuan de ji ge wen ti” 關於泉州港出土海船的幾個問題 Wenwu 4 (1975), p. 84.

to information provided in his travel journal titled Daily Register of a Northern Journey (Beixing rilu 北行日錄), the distance from Si county to Kaifeng measured 1,045 li. This figure far surpasses the length of the Bian River as reported by Sheng Gua (that is, 840 li, 130 by). But if we use the Song dynasty Astronomical Li to translate Lou Yue's figure of 1,045 Li, the result is as follows: 1,045 x 441.45 m = 461.52 km. This number tallies almost exactly with our earlier conversions of Sheng Gua's figure for the length of the Bian Canal.

4. The Mou System During the Song

It will be recalled that during the Song one by comprised five chi. In the section on "Square Field" in the "Monograph on Foods and Commodities" in the Song shi, we find the following report:

Shenzong (or Zhao Xu 趙曙 r. 1067-1085) was troubled that field taxes were not equal. In the fifth year of the Xining reign-period (or 1072), the square field system was reinstated. It was rescripted that the Overseer of Agriculture 司農 who promulgated the laws concerning 'Square Fields, Equitable Tax Regulations, and Tax Report Forms' in the Underheaven. From east to west, and from south to north, each [square field] is 1,000 by, equivalent to forty-one qing, sixty-six mou, one-hundred and sixty bu. This makes one fang (方) or (方丈)."

Expressed in mathematical terms, this would be 1,0002 = 240 x (41 x 100 + 66) + 160. That is to say, under the Song, 240 square bu constituted one mou. This figure is corroborated on numerous occasions in the Shushu jiuzhang, where Qin Jiushao explicitly states that "The (legal) standard for [one] mou is 240 bu.\(^5\) Below are calculations for the surface area for one mou of land during the Song, based on the system whereby each mou was equal to 240 square bu, and wherein each bu comprised five chi.

(1) Calculating by means of the Three Offices' Cotton and Silk Foot, then Song dynasty mou\(^5\) = 240 x (5 x 0.3112)\(^2\) m\(^2\) = 581.07 m\(^2\); Song dynasty mou\(^6\) = 240 x (5 x 0.3116)\(^2\) m\(^2\) = 599.52 m\(^2\).

(2) Calculating by means of the Biyinger's Foot, then Song dynasty mou\(^7\) = 240 x (5 x 0.3091)\(^2\) m\(^2\) = 573.26 m\(^2\).

(3) Calculating by means of the Zhe Foot, then Song dynasty mou\(^8\) = 240 x (5 x 0.2749)\(^2\) m\(^2\) = 453.42 m\(^2\).

Mou\(^5\), mou\(^6\), and mou\(^7\) were used primarily during the Northern Song. Mou\(^8\) was also used during the Northern Song, especially in Hangzhou and

jun and Hargett: MEASURES in areas near there. In Southern Song times, its use became more widespread.

5. The Li System Under the Liao

Since there are still relatively few sources available on the system of weights and measures employed under the Liao, our findings in this section must be regarded as tentative. Although our "conclusions" are based on archeological materials and reliable written records, more evidence must come to light before any final verdict can be made concerning the li system under the Liao.

It is reported that the ruins of the Supreme Capital 上京 of the Liao are located near Linding zhen 林東鎮 in Bairin zuoqi 巴林左旗, Inner Mongolia Autonomous Region. The wall of the imperial city is constructed of rammed earth, the layers of which are clearly distinct. The remains of the wall stand between 6 and 10 m in height. A survey of the remains of the rampart revealed the circumference of the imperial wall to be approximately 14,000 m. According to the Liao shi, the Supreme Capital of the Liao was built in 916. "Its wall was two cheng high; watchtowers were not put in place (on the wall). In area it measured twenty-seven li. The wall to its north was called the 'August Wall.' It was three zhang high, and had roofless lookout turrets. Inside was the Great Interior 大內. The southern wall was called the 'Han Wall.' Since the height of the imperial wall was equal to or greater than ten meters, then one Liao chi was equal to or greater than 1,000/30 cm = 33.33 cm (Formula 4). The numerical value of a Liao chi can also be estimated. One Liao li\(^8\) = 14,000/27 m = 518.52 m.

The Central Capital 中京 of the Liao at Dadin municipality 大定府 was first built in 1007. Its ruins are located in Damocheng 大茂城, Ningcheng 宁城, Inner Mongolia Autonomous Region. In 1959 and 1960 the Central Capital of the Liao Excavation Commission 中京發掘委員會 measured the east-west section of the wall to be 4,200 meters, the north-south section to be 3,500 meters. Thus, the circumference was about 15,400 meters. In the Chengyao lu乘耀錄, an account of the Song ambassador Lu Shen's embassy to the Liao in 1008, it is related that the area within the outer

58 See "Liao Shangjing yizhi 上京遺址", in Wenwu 5 (1979), 79.

59 The results of this survey are reported in Wenwu kaogu congshu sanshu xuan 文物考古工作三十年 (Beijing: Wenwu chubanshe, 1979), p. 78.

60 Liao shi, 37.441.

61 "Liao Zhongjing chengzi fajue de zhongyao shouhuan" 中京城址 考古的重要收获, Wenwu 9 (1961), 35.
wall of the Liao capital comprised thirty li. If we calculate
following this estimate, one Liao li = 15,400/30 = 513.33 m. The
average numerical value of Liao li and Liao li, then, is 515.93 m. For
the time being, we will adopt the figure of 515.9 m as the approximate
length of a Liao li.

If we assume that in the li system under the Liao each li comprised
360 bu, and each bu comprised five chi, then one Liao chi = 51,590/1,800
cm = 28.66 cm (Formula 5). Since there is a substantial difference in the
figures yielded by Formula 5 and Formula 4, it is difficult to tell
which one (if any) is an accurate representation of a Liao foot measure.
We suspect that the li system under the Liao was influenced by the li
system used during the early Tang (this, of course, suggests that the
same system might have been used in the Bohai 輿 海 Region during
the years between the Tang and Liao periods), in which each li comprised 300
bu, and each bu comprised five chi. If we calculate according to these
tentative figures, then one Liao chi = 51,590/1,500 cm = 34.39 cm (which
we shall round off to 34.4 cm). While the results of our computations
of the Liao dynasty li and chi certainly cannot be regarded as precise
figures, still they can provide historians and students of the Liao
period with a general reference.

In his article "A General Account of the Foot Measure During the
Successive Dynasties in China," Zeng Wuxiu 蘇武秀 points out that the
"Liao used the Small Li; one li was 1,500 chi." This viewpoint is
correct, although in his article Zeng did not set forth the reasons for his
argument. It might be mentioned in passing that Zeng calculated his
Liao chi based on figures of an archaeological survey concerning the
circumference of the remains of the wall around the Jin Central Capital
(this expanded metropolis was built on the original site of the Southern
Capital of the Liao, also known as Xijin 折 覺 municipality). In our
opinion, this is not the best approach to solving the question at hand
(see the comments below).

Since the Liao had only recently changed from a nomadic lifestyle to
one based on agriculture, there is no need to consider the mou system
here.

6. The Li and Mou Systems Under the Jin

62 Lu Zhen's description is preserved in Jian Shaoyu 江少虞 (12th cent.), Songchaoshishi Leixuan 宋朝事實類苑 (Shanghai: Shanghai guji
chubanshe, 1981), 77.1012.

63 In Tang times, the heart of the Bohai (or Parhae) region was
situated in what is now Eastern Heilongjiang province and the lower Amur
River area. This was the territory of a people of Tungusic stock known as
the Malgal (Chinese = Hehe 費戈). Later this area was controlled by the
Khitan (or Gidan 契丹) people, who founded the state of Liao.

64 Zeng's article, "Zhongguo lidai chidu gaishu" 中國歷代尺度
guoshi, appeared in Lishi yanjiu 3 (1964), 175.

There is a relatively large bulk of source materials confirming that
the Jin, as soon as they took control of China, modified the li and mou
system used by their predecessors, the Liao. Although the Jin system was
heavily influenced by that of the Liao, we cannot eliminate the
possibility of influences from the Tang and Song systems of li and mou as
well. Describing the field system, the Jin shi relates that: "In measuring [the size of] a field, one uses the Buildi's chi. Five [such] chi constitute a bu. An area one bu in breadth and 240 bu in length, constitutes a mou. One hundred mou constitute a cing-p". The same
information is also found in the Xu Tongqian 謝通典. The Jin shi
and Xu Tongqian, however, do not discuss the li system of the Jin period.
In other words, neither of these works considers the number of bu that
constituted a li. Moreover, the length of a chi under the Jin still
remains to be determined.

As for the chi under the Jin, many scholars have considered it to be
a continuation of the Tang and Song foot measures. Chen Mengjia 陳 濟
even went so far as to say that the Buildi's chi of the Jin might be equal to
the Three Offices' Cotton and Silk Foot of the Song, but this view
has proven to be incorrect (see the comments below).

Recently, Gao Qingshan 高青山 and Wang Xiaobin 王曉斌 have
determined the approximate value of a Jin dynasty chi by investigating
official government seals (guanyin 官 印) of that period. According to
the "Hundred Offices Monograph" ("Baiguan zhi 百官 職") in the Jin shi,
the size of the imprint left by an official's government seal was determined by that official's grade (or rank) in the bureaucracy;
the higher the office, the larger the imprint. In 1156, the following official seal system was promulgated by the Jin:

The Three Preceptors (sanshi 三 師), the Three Dukes (sansong 三公),
the Imperial Princes (qinwang 欽 王), and Director of the
Imperial Secretariat (shangzhenghu Linhe 上書令) use the gold seal, which
is two cun square. ... The seal of a first-grade [official] is one
cun, six-and-a-half fen square. ... The seal of a fifth-grade [official] is one cun, four fen square. ... The seal of a ninth-grade [official] is one
cun, one fen square.

Based on their examination of eighty-nine Jin seals, all bearing reignyear designations, Gao Qingshan and Wang Xiaobin concluded that:

There are seventy-eight seals indicating that one Jin dynasty chi
was 40 to 45 cm in length. There are ten seals indicating that one
Jin dynasty chi was less or greater than 40 to 45 cm in length.
This proves that the length of a chi during the Jin period was
between 40 to 45 cm. Among these seventy-eight official seals,

65 Jin shi, 47.1043.

66 Xu Tongqian (1886 Hejiang shuju ed.), 2.16a.

68 Jin shi, 58.1337.
there are forty-three that indicate that one jin chi equaled or approximated 43 cm. We thus believe that one chi during the Jin period was about 43 cm.

More than twenty years ago, a Jin dynasty "Laibin Township Mile-Marker" stele was unearthed in Shahe xicun 沙河西村, Suizhong 梁中 xian, Liaoning province. This stele was probably erected sometime between 1143 and 1195. During the Jin period, Laibin township was under the jurisdiction of Rui 瑞 county. According to the inscription on the stele, the township (in Jin times) "extends to the west thirty-five li to the single mile-marker west of the county." The area 15,000 meters west of the place where the mile-marker stele was unearthed today is known as Lianweili village 前衛村. This is, in fact, the original site of Rui county under the Jin.

A hou, or "mile-marker," is just that: a sign that marks distances in li. Five li intervals were indicated by a "single mile-marker": every ten li one found a "double mile-marker." "Extends to the west thirty-five li to the single mile-marker west of the county" is the same as saying: Rui county is about thirty li to the west, which means that the length of one li under the Jin was around 500 meters.

In his *Chronicles of the Quarters and Domains (Encountered) in Reading History* (Dushi fangyu jiya 過史方舆紀要) (1631-1692) relates the following:

The old Gazetteer [saying]: Liao Taizong 太宗, or Yelu Deguang 耶律德光, elevated You county 至州 to be the Southern Capital 南京, it was also called Yanjing 燕京. [Liao] rebuilt the metropolis wall. Its site was southwest of the present city wall. The inner portion constituted the August Wall. Its circumference was seven li, 103 bu. It had five gates. The outside rampart constituted the Metropolis Wall. It was thirty-six li in circumference. It had eight gates. The deposed Jin sovereign Wanyan Liang 完顏亮 changed the name of Yanjing to Zhongdu 中都 (lit., "Central Metropolis"), and ordered that the Metropolis Wall be expanded. (The Interior Wall was nine li, three bu in circumference) It had thirteen gates.

There are three points in this passage worth discussing. First, according to the itinerary of Xu Kangzong's 许敞宗 (jinshi ca. 1115) 1124 embassy to the Jin, which is outlined in juan 40 of the *Monograph on the Great Jin State* (Da jinguo zhi 大金國志), "the circumference of the wall [in Yanjing] was twenty-seven li. The tower walls were forty chi high. The number of towers was reckoned to be 910. There were three rows of moats, and eight gate openings in the city wall." The Jin metropolis of Yanjing, as it is here described, is in fact the original Liao Southern Capital at Xijin municipality. The circumference of its outer wall was only twenty-seven li. It did not measure thirty-six li. The figure "thirty-six li" must refer to the circumference of the outer wall after 1151, which is when Wanyan Liang ordered Zhang Hao 張浩 and others to expand the city wall. The "Monograph on Geography" in the Jin shi does not mention the circumference of Zhongdu's outer wall. The comment in the *Monograph on the Great Jin State* that Yanjing's "Metropolis Wall was about seventy-five li all the way around" is clearly wrong. Moreover, the editors of the Liao shi have mistakenly taken the circumference of the Southern Capital at Xijin municipality to be thirty-six li, 76 which is the figure Gu Zuyu followed.

Second, according to the *Monograph on the Great Jin State*, the interior city wall of Zhongdu during the Jin was "nine li, thirty bu." 75 In the *Dushi fangyu jiya* this figure is mistakenly quoted as "nine li, three bu." 74

Third, the *Monograph on the Great Jin State* says that Zhongdu had twelve gates, each of which was apportioned into three [smaller] gates. A different figure is provided in the *Dushi fangyu jiya*. It says there were thirteen gates. 75 It is possible that one of the gates had more than one name, which later chroniclers might have mistakenly counted as two separate portals, thus accounting for the number "thirteen."

The circumference of the outer wall of the Liao Southern Capital at Xijin municipality has never been estimated. In 1258, when the ruins of the Jin capital at Zhongdu were investigated, the outer west wall of Zhongdu was found to measure approximately 4,530 meters. The southern wall measured about 4,750 meters, the eastern wall approximately 4,510 meters.

72 Da jinguo zhi (Guoxue jiben congshu ed.), 40.302. The number "910" in this reference may be an error.

73 Da jinguo zhi, 33.244.

74 Liao shi, 40.494.

75 Da jinguo zhi, 33.244.

76 Dushi fangyu jiya, 11.474. Gu Zuyu does not identify his source for this figure.

77 Da jinguo zhi, 33.244. Two of these smaller gates were for incoming and outgoing traffic. The third (or middle) one was reserved for the emperor's exclusive use.

78 Dushi fangyu jiya, 11.474.
meters. It was also estimated that the north wall should have measured around 4,900 meters. The differences between these four figures are not great. The circumference of the outer wall, then, was about 18,690 meters. Calculating with this figure, one Jin dynasty li = 18,690/56 m = 519.17 m.

Also, according to the Ming Veritable Records 明實錄, on wu zi day of the eighth month in the first year of the Hongwu 洪武 reign (or 2 October 1368), Major General Xu Da 徐達 (1332-1385) dispatched the Adjutant on the Right 右丞 薛iano and the Vice Administrators 參政, Fu Youde 萬友德 (ob. 1388) and Lu Ju 陸聚 (ob. 1388), to lead troops and take Datong 大同 by force. He [also] ordered the Army Commander 指揮 Ye Guozhen 杨國珍 to measure and calculate the circumference of the [city wall of] the Southern City 南城 in Beijing 北平. Altogether, the circumference measured 5,328 zhang. The Southern City is the former site of the Southern City during the Jin. The unit of measurement used to figure distances at that time was the Baociao 寶鉞 chi, which measured 34.02 cm in length. Figuring by means of the Ming Dynasty Baociao Foot, then, the circumference of Zhongdu = 53,280 x 34.02 cm = 18,125.86 m. Thus, one Jin li = 18,125.86/56 = 503.50 m. The average value of Jin li is 511.3 m. For now we shall adopt "511.3" as an approximate figure for a li during the Jin, which does not conflict at all with the information found on the "Laibin Township Mile-Marker" stele.

As mentioned earlier, the precise nature of the li system used during the Jin is unclear. If we assume that it was a continuation of the Liao system, then one Jin dynasty chi equaled 511.3 / 1500 m = 34.1 cm. This figure obviously differs significantly from that of Gao Qingshan and Wang Xiaobin who, it will be recalled, calculated the length of a Jin dynasty chi to be about 43 cm. In his Nancun chuogeng lu 萬城遼志, Tao Zongyi reports that the circumference of the wall around the Yuan dynasty capital at Dadu 大都 (modern Beijing) measured 60 li. He also mentions that 240 bu constitute one li. If we assume that the li system under the Yuan was a continuation of the Jin system, and that 240 bu comprised one li under the Jin, then one li during the Jin period equaled 240 x 5 chi = 1,200 chi. From this figure we can calculate that one Jin dynasty chi = 511.3/1,200 m = 42.6 cm = 43 cm, which tallies exactly with the figure that Gao and Wang came up with after investigating the sizes of more than eighty government seals. From this it is clear that one li under the Jin constituted 240 bu, one bu constituted five chi, and that one chi was approximately 43 cm in length. We can thus calculate that: one Jin

dynasty li = 0.43 x 1200 m = 516 m, and one Jin dynasty mou = 240 x (5 x 0.43)² m² = 1,109 m².

Although the figures provided above on the Jin dynasty li, chi, and mou cannot be regarded as precise figures, they may be useful for reference purposes.

7. General Table of the Measures Li and Mou under the Song, Liao, and Jin

For the reader's convenience, the numerical results of the preceding discussions are reproduced in the table on the following page. The table may also serve as a summary of the findings of this investigation.

81Our source for the length of a Baociao Foot is Zhongguo gu dai dulangsheng tui, p. 9.

82Tao Zongyi, Nancun chuogeng lu, 21.297.
Buddhist Institutions in the Lower Yangtze Region During the Sung Dynasty

Liu Xinru
Institute of World History
Chinese Academy of Social Sciences
Beijing, China

Most historians who study Chinese Buddhism concern themselves with its development before the Sung, especially during the T'ang Dynasty, which is considered the heyday of Buddhism. By the time of the Sung, according to those historians, Buddhism had already declined as a religion. No doubt Buddhism as a spiritual force and social institution did change during the Sung Dynasty. Following repeated government persecutions during the late T'ang and the cessation of contact with India, Buddhism did decline in some respects. It certainly ceased to dominate the intellectual life of China's elite, the discipline of the monastic community seems to have lost its former vigor, and Buddhism may have become more susceptible to the absorption of popular Chinese beliefs. However, as this paper will attempt to show, Buddhism lost none of its importance as a popular religion nor as a socio-economic institution during the Sung. Since most available materials for this study — the local histories and monastery histories — are from the region of the Lower Yangtze valley, I shall concentrate on that region.

Historical Setting

After the political chaos of the late T'ang and the Five Dynasties, a new demographic pattern and cultural trend emerged. Political and economic centers shifted east; with the rise of tribal powers in Northwest China, cultural exchange with and trade through Central Asia decreased. At the same time communication and sea trade with the outside world flourished along the east and southeast coasts. This trend began in the early Sung and accelerated when northern invasions forced the Sung capital south.

Meanwhile, Buddhists emphasized the significance of religious service for people's future lives and their deceased family members' welfare, and served more and more lay people. With all these modifications, Buddhist monasteries reflect Chinese Buddhism's adaptation to new circumstances. In spite of the Buddhist doctrine stipulating that monks were to be recluses from the secular world, from its very beginnings in India, the Buddhist sangha was closely associated with commercial and urban life; monasteries tend to be located around big cities and major trade arteries. For example in Lo-yang, which was located at the very end of the Silk Road and was an important city for both domestic trade and trade with Central Asia, the urban elite often donated their houses to Buddhist monks.

In the following centuries the fate of Buddhist monasteries was closely connected with the rise and decline of urban centers. While the Lower Yangtze Valley under study was one of the best developed regions at the beginning of the Sung, it also nourished a great number of monks. With the increase in the political and economic significance of the region during the Sung, the influence of Buddhist monasteries increased.